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Intuitively one thinks that there must be some com- 
monality or reasoning procaaen that characterize 
"diagnonis" M a generic activity, even a c m ~  domains u) 
different Y medicine and mechanical rysterm. There 
rhould be contrpt strategies and ways of uning knowledge 
that are common to diagnostic reawning u such. or at 
least typical of diagnostic ressoning. Similarly there 
should be common types of knowledle structuren and con- 
trol strategirn for, say. design aa a kind of remoning ar- 
tivity. Further, we expect that the structuren and control 
regimen for diagnostic ressoning wil l be generally different 
from thone for design reiuoning. Howevrr, when one looks 
at the formalisms (or equivalently the Ianguagn or shells). 
that are commonly used in expert system design, the 
knowledge reprenentation and control regima do not typi- 
cally capture thene distinctions. For example, in diagnacl- 
tic reasoning. one might generically wish to speak in  ternis 
of malfunction hierarchh. rule-aut ntrategies, Netting lip a 
differential. etc., while for deaign. the generic terms might 
be device/component hierarchies, design plans, ordering of 
design subtaaks, etc. Ideally one would like to rrprevent 
diagnostic knowledge in a domain by using the vocabulary 
that is appropriate for the tmk. Htrt typically thr Ian- 
guages in which the rxpcrt systenis have hccn imple- 
mented have sought uniformity wrws tasks. and thus 
have lost clarity of repriwntation at the lurk level. The 
c.ogip~~tat.i!qal iiriiversality of rrprrventation languagrs such 
as Emycin or OI'SJ -- i.e.. the fact that any computer 
program can in  prinriplr hr written in t h w  langiiag~s -- 
often ronfiisr> t l i r  ihsiw. q i r i r r  affrr I he svstwn is finally 
hi l t  i t  is oftvn iiticleiir which portions of thr system 
rrprrsent clornairi vxprrtisr. and which are programming 
devices. In addition, thr control regirnia that these lan- 
guages come with (such a.. forward or backward chaining) 
do not explicitly indicatr the real control structure of the 
system at the task level. For example. the fact that HI ' prrforrns ii linvar wqurnce of subta*k.q -- an atypically 
s i i i i i h  ktratvyy for ilmign prot)lrm solving -- is n o t  e'x- 
plir it ly cwroila-tl: the system i h i g t i r r  s o  t i )  spvak 
"wrryptrd" t.tiis contml in thr paLtrrn-iiiatrhing control of 
(1 I'S*5. 
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could be "pmgrammd" in the 
o f  the status assigned to the 
knowledge-level phenomena (Y 
tation level phenomena, which 

rule language, but because 
ru la  and their control u 
opponed to the implemen- 
they often are), knowledge 

acquiritiun u often directed towards (typically syntactic) 
strategies lor conflict resolution. whereu the really opera- 
tional expert knowledge is at the organizational kvel. 

Thio level problem with control rtructurea is mirrored in 
the relative poverty of knowledgclevel primitives for 
reprenentation. For example the epistemologY of rule s y s  
terns is exhausted by data patterns (antecedents or 
eubgodo) and partial decisions (consequents or gMh), that 
of lolic is similarly exhausted by predicalea, functions, in- 
frrencc rules, and related primitives. I f  one wbha to talk 
a h u t  types or goals or prrdicatta in ruch a way that con- 
trol behavior can hr! indexed over this topolo(ly. such a 
behavior can often be prqrammcd into thew system, but 
no explicit rendering of them is possible. E.&, Clanrey 
tt found in his work using Mycin to teach students that 
for explanation he needed to attach to each rule in the 
Mycin knowledge bane e n d i n g s  of typcs of g ~ h  30 that 
explanation of i t a  hehavior ran tw couched in trrms d 
this encoding. rathrr than only in tivrtn of " l h a i w  .. . 
WM a suhgoal of .. ,." This is not lo argur that riilr 
rcprmrntations and backward or forward chaining m r c t n d ~  
are not "natiiral" for sonie situations. If all that a 
problem solver has* for knowledge in a domain is in the 
forin of a large collmtion o f  unorganitrd awaiative pat- 
terns. then (lata-dirrctetl or goal-clirrrtrcl associations rnay 
be the b u t  that the'agrnt can do. I lu t  that is precisely 
the occarion for weak rrit.thcds w r h  as hypothmite and 
match (4 whirh the ahovc~ aswriiitiotis arc variants). and. 
typically, sucrrssf~iI soliitions caiirint tw rxpwtrd in com- 
plra problrms without corntiinatoriid warrhr9. Generally. 
howevrr, rxprrtise can hr rxprrtrd to ronsists of much 
morp organizrd collrrtions of knowlrclgr. with rontrol he- 
havior indrxrcl hy the kinds of organizations and forms of 
knowledge in them. 

Thus. thrre is a need for understanding the grnrric in- 
formation processing tasks that underlie knowledge-bawd 
reasoning. Knowlrdge ought to he dirrctly c*nroiiml at the 
appropriate lrvel by using prirnitivra that naturally 
describe the cloniain knowlrdge for a g ivw generic task. 
t'rohlem solving behavior for the  task ought to hr ron- 
trolled by regimes that are appropriate for the task. If 
done correctly, this would simultaneously farilitate 
knowledRe representation, problem solving. and explana- 
tion. 

A t  this point i t  will he useful to make further distinc- 
tions. Typically many tasks that we intuitively think of 
as generic tasks are really complex gciicric tasks. 1. e.. 
thry are further tlrrornposable into compoiients which are 
more elementary ,in the sense that each of them has a 
more homogen~oiis control regime and knnwledge s t r i i c -  
tures. For vxaniple, what one thinks of ai the diagnostic 
task, while it may he generic in  the sense that the task 
may he quite similar across domains. it is not a unitary 
task structure. Diagnosis may inv~i lv r  r!awificatory 
reasoning at a rcrtain point. masoning froni one claturn to 
another datum at  another point. m i l  alductive aw.nibly 
of multiple diagnnstir hypoth-es at another point. 
Hierarchical classification h a  a i l i ffrrrnt form of knowledge 
and rontrol hehavior from thtrir for da ta - t4a ta  reasoning. 
whirh in t u r n  is ilissiniiliir in  t h i w  cliriirnsions from as- 
urrrihling hypotheses. O u r  msc-arrh foruses on tasks at 



both these levels, but the latter are viewed as somewhat 
"atomic" t a k a  into which more complex, but still generic, 
tab such as diagnosis and design can often be decom- 
d. 

To summarize the view preamted so far: T h e n  is a need 
for understanding the generic information processing tasks 
that underlie knowledgebased reasoning. Knowledge ought 
to be directly encoded at the appropriate level by using 
primitives that naturally describe the domain knowledge 
for a given generic task. Problem solving behavior for the 
task ought to be controlled by regimes that are ap- 
propriate for the task. If done correctly, this woulcl 
simultaneously facilitate knowledge representation, problem 
solving, and explanation. 

Over the years. we have identified, and built systems 
using, s ix  wch generic tasks. Our work on .\.IDX". "I. 
e.g., iden t ified hierarch i r a  I clasrificat ion. 
knowledge-directrd inforrriatiori passing. and 
hypothesis  rriatcliirig ds three genrric tasks. and slio~ecl 
how certain cla.ses of diagnostic prot~lw~is can Ln- irnple- 
mented as an integration of these generic tasks. Since 
then we have identified several others: object syirthcsis 
b y  p l an  selection and refinement", state 
abstraction' ,  and abduc t ive  assembly o f  
hypotheses'?. There is no claim that these  six are ex- 
haustive; in fact, our ongoing research objectivr is to iden- 
tify other useful gencric tasks  and understand their 
knowledge representations and strategies for control of 
problem solving. 

Some Generic Tasks  

Charactcrizat~on 01 Ccncric Tasks 

Each generic task is characterized by: a task 
specification i n  the form of generic types of input  and 
o u t p u t  information; specific fo rms  of  knowledge needed 
for the t a s k ,  and Tpecific organizat ion of knowledge 
particular to the t a s k ;  a family oi control  rrgirries that 
are appropriate for the t a s k .  

A task-specific control regime comes with certain charac- 
teristic types of s t ra tegic  goals. These goal types will 
play a role in providing explanations of its problem solv- 
ing behavior. 

When a complex task is decomposed into a set of 
genvric tasks, it will in general be neccssary to provide for 
communication hetwren the different structures sperializing 
in these different types of problem solving. Also there is 
no t  necessarily a unique decomposition. Depending upon 
the availability of particular pieces of knowledge. different 
architectures of generic tasks will typically be possible for 
a given complex task. 

tVc. will now give brief rh.iractrrizations of tht .  Kcvierit 
tasks that we have identified. 

Taxonorriir (:lassification 

Task specification: Classify a (possibly rorriblex) devcrip 
tion of a situation u an element. as specific as possible. 
i n  a classi/ication hierarchy. E.R. classify a medical rase 
description as an &rrie:it of a diwrrst. hierarchy. 

Forms of knowledge: one main form is <partial situa- 
tion description> ---i evidence,'belief about confirmation 
or  dixonfirrnation of clasaificatory hypotheses. E.g., in 
medicine, a piece of clwifwatory knowledge may be: cer- 
tain pattern in X-ray k bilirubin in blood -> high 
evidence for cholestasis. 

Organization of knowledgc knowledge of the form above 
diafribufcd among concepb in a classificatory concept 
hierarchy. Each conceptual "specialist" ideally contains 
knowledge that helps it determine whether it (the concept 
it stands for) can be catablirhcd or rejected 

Control Regime: Problem solving is top down, each con- 
cept when called upon tries to establish itself. If it suc- 
ceeds, it lists the reasons for its success, and calls its suc- 
cessors. which repeat the process. If a specidi t  fails in 
its attempt to establish itself. it rejects itself. and all i ts  
successors are also autonutically rejected. Ths control 
strategy can be called €s&bliah-Rc/inc, and results in a 
specific classification of the case. (The account is a 
simplified one. The reader is referred tolo for details and  
elaborations.) 

Coal types: E.g.. Citablish <concept>. Refine 
(subclassify ) <concept > 

Example Use: Medical dugnosis can often be viewed as 
a classification problem. In planning, it is often useful to 
classify a situation as of a certain type, which then might 
suggest an appropriate plan. 

Obiect Synthesis 

Task Specification: 

Plan Selection and Refinement 

Design an object satisfying specifica- 
tions (object in an abstract sense: they can be plans. 
programs, etc.). 

Forms of knowledge: Object strac'ure is known at some 
level of abstraction, and pre-compiled plans arc available 
which can make choices of components, and have lists of 
concepts to call upon for rc/ining the design at  that level 
of abstraction. 

Organization of Knowledge: Concepts corresponding to 
roiriporieiits organized in a hierarchy mirroring the object 
structure. Kach concept has plans which can he used to 
make commitments for various "dimensions" of the rom- 
[Ionetlt. 

Control Regime: Top down in general. The following is 
done recursively until a complete design is worked out: A 
specialist corresponding to a component of the object is 
rallrd. the specialist rhooses a plan based on the spcuifica- 
tions and problem state. instantiates and executes the plan 
which suggests further sprcialists to call to set details of 
the sukomponents. Plan failures are p a w 4  up unt i :  ap- 
propriate changes are made by higher level sprrialists. 

Coal Types: E.g., Choose plan, executr plan elerrlrnt .. 
refine <plan>, redesign (modify) . partial design . to 
respond to failure of ..subplaii. .. st4tyt alternative plan. 
etc. 

Example: Expert design tasks, routine synthesis of plans 
of action. 

We will characterize the other generic tasks more suc- 
The reader is referred to' for more details. cinctly. 
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Knowlednc-Directed Information Passins 

T a s k  It b desired to obtain attributes ol some datum. 
by deriving from some conceptually related datum. Some 
forms of knowledge are: <attribute> of <datum> b in- 
herited from < a t t r i b u t e > W  p a n t  of <datum>, 
<attribute> of <datum> b related as <relation> b 
<attribute> of <concept>. Organization: concepts are or- 
ganized as a Rune hierarchy, with IS-A and PART-OF 
l ink.  h h  frame is 8 specialist in tnowledge-dimted 
da ta  inference for the concept. Thu b brrically a hcrar- 
chical information-passing control regime. 

Example wa: knowledgebased data retrieval tasks in 
wide variety of situations, as an  intelligent data base in 
support of problem solvers of other types. 

Abductive Assembly of Exdanatory Hvwthesu 

Task Specification: Given a situation (described by a set 
of da ta  items) to be explained by the best explanatory ac- 
count, an,; ,iven a number of h),. theses, each uuxiated 
with a degree of belief, and each of which offers to ex- 
plain a portion of the data (possibly overlapping with data 
to be accounted for by other hypotheses), construct the 
best composite explanatory hypothesis. Some forms of 
knowledge are: causal or other relations (e.& special case 
of. incompatibility, suggestiveness) between the hypotheses, 
relative significance of data ikms, and ways to group data 
items to be explained. Organization: one main, or a 
hierarchical community of active abducen, each specializ- 
ing in explaining a certain portion of the data by compon- 
ing and criticizing hypotheses. Control Rqimr: I%. 

for a fuller discussion.) A specialized means-ends 
regime is in control, driven by the goals of explaining all 
the significant findings, with an economical hypothesis. 
which is consistent, and has been criticized for certain 
strengths and weaknesses. Some goal typea are: account- 
for <datum?.: chr?ck-superfliioiisnrss-of < hypotheis>. 
choose the niokt 4gnifirant uric-xplained finding. Thr In- 
ternist system" and t h r  Ilrndral systern15 perform abduc- 
t i v e  assembly as part of  ttrcir problem solving. 

s_la& J b ~ . r a _ r _ t i ~ ~  

Task Specification: (iivrn a change in snme state of a 
system, provide an account of the changes that can be ex- 
pected in the  functioning of the system. (Useful for 
reasoning about consequences o f  changes on complex 
systems.) One knowledge fnrrrt is . rhange in state of 
subsystem> ---.. ' .change i n  f i in r t iona l i ty  o f  subsystem = 
change in state of thr  irnrrirdiat+*ly larger a,~steni .. The 
knowledge is o r g a n i d  i n t o  conceptual .;pecialists cor- 
responding to systems and 3ubsj.sterris connected in a way 
mirroring the way the systems and subsystems are put 
together. The control is basically bottom up. following 
t h e  architecture of t h e  systeni, subsystem relationship. 
The changes i n  states arc. fo1lowt.d through. intrrpreteci a~ 
changes in functionalities of subsystems, until the changes 
in the functionalities at the level of abstraction desired are 
obtained. This form of reasoning is useful for answering 
questions like: "What system functionalities will be com- 
promised if this v a l v e  fails closed?". 

Hypothesis Matching 

Given a concept and a set of data that describe the 
problem state, decide if the concept matchei the situation. 
The idea here is to encode the rout ine knowledge for 

verification and refutation that the concept applies to the 
situation. One way this can be done is by using a h i e r u -  
chical repraentation of evidence abstractions, where the 
top node determines the overall d a r e  of matching of the 
hypothesb to the data. and lower-level node reprcrvnt 
components or features of evidence for tbe e v i h e  
abstraction at higher levels. Form of knowkdge are such 
aa to enable evaluation of strength for each ev idmce  
abstraction, and to support mapping degrees of b e l i d  ir 
each of t h e  evidence abtractions, to d e g m  of belief in 
the higher abstractions. Strength for an evidence ab-- 
tion can be determined Each evidence ahtraction c a n  bs 
determined by matching against prototypical p a t t e r n  
which have evidential significance. Samuel's rigndrrr 
tables can he thought of as performing this t o k .  

How Existing Expert S y s t e m s  can be  Analyzed In 
Thir Framework 

Separating the implementation language and the intrinsic 
nature of the tasks has been argued aa being salutary for 
a number of reasons. Let us look at  some of the better 
known expert systems from t h e  perspective of t h e  
framework developed so L; in this paper. 

MYCIN's task is to ( i )  classtly a number of ohservotiom 
describing a patient's infection as diie to one or  ano thc r  
organism. and (i i )  once that  IS done. to instantiate a PILI 
with parameters appropriate for the partuular prai-nt 
situation. We have shown in1'' how the diagnostic portion 
of MYCIN can be recast as a classification problem soivcr, 
with a more direct encoding of domain knowledge and a 
control structure that is directly appropriate to this form 
of problem solving. 

~rospector" clam+ a geological description as occ of a 
pre-enumerated set of formations. Internist1' genera- 
candidate hypotheses by a form of enumeration 
(plausibility ,coring and keeping only the top few) a n d  
uses a form of obducftvc assembly to build a compesite 
hypothesis chat accounts for all of the data. Asscnbly 
and hypothesis enumeration alternate. Dendralts genera- 
candidate hypotheses by a form of hypothesir mofching a n d  
uses a form of abdueftuc assembly which puts together the 
best molecular hypothesis from the fragmenta produced by 
the matching process. 

Note that in these analyses we have not  mentioned r u l a  
(Mycin), networks (Prospector), graphs (Dcndral). e&., 
which are the mean8 of encoding and carrying oat the 
tasks. This separation is an essential asprct of w h a t  we 
mean by the "right" level of abstraction in analysis. 

Encoding Knowledge a t  the  Level of the Tank: 
The Generic Task Toolset  

For each ge.:eric t a k ,  the forrri and organization of the 
knowledge cfirwtly suggests the appropriate representation 
in terms of which domain knowledge for that task c a n  be 
encoded. Since there is a control regime rtsociated wit4 
each task, the problem solver can be implicit in :t.e 
representation language. That is, a shell for each generic 
t a s k  can be constructed quch that, as soon u knowledge 
is rrprnrnted in the shell, a problem solver which u s a  
the control rrgime on the knowledge can be created by 
t h e  interpreter. This is similar tn w h a t  reprewntation 
.iv\tmna *urh aa KMYCIN do. hilt w t c  t ha t  we arc 
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deliberately trading generality at a lower level to gain 
rpecificity, clarity, and richness of ontology and control at 
a higher kvel. 

We have designed and implemented representation lan- 
guagcs for versions of each of the six generic tasks we 
described. Ilere h a list of t h r  grncric task tooh, each 
with a brief description of the task for which i t  is 
designed. 

0 HYPER for matrhing ronrept to situation to 
determine confidrnrv or appropriatrness. 

CSRL for taxonomic classification. typically a 
major component of diagnostic reasoning.I6 

0 DSPL for object synthesis by plan selection 
and refinement. captures knowledge for certain 
routine design and planning tasks.19 

0 IDABLE for knowledgcdirrrted information 
passing for intelligent data retrieval. 

0 PEIRCE for assembly and c r i t i c i sm of com- 
posite explanatory hypntheses. a form of 
abduction or best-explanation reasoning.1° 

0 WWHI (What Would Happen I f )  for predic- 
tion by abstracting state changes. 

We have described how this approach directly helps in  
providing intelligible explanations of problrm solving in ex- 
pert systems.21 The approach ha3 a number of other im- 
plications. E+. uncertainty handling in problem solving is 
usefully viewed a3 consisting of different types for each 
kind of problem solving. rather than as a uniform general 
met hod. iL 

In principlr thr tools ran hr iisrd togrthrr to build rom- 
posite problern solvers that intrgratr thr different types of 
reasoning associated with the generic tasks. System. have 
been built integrating more than one type of reasoning 
(the Rrcl" systrm for examplr relirs on four of the typrs) 
hut thesr systen~s predate. thr availability of the tools. ;\t 
present the actual toolset consists of separately imple- 
mented tools in a variety of languagrs: rach tool having 
an incarnation in Interlisp. LAIR ha5 under development 
an integrated version of the toolset in Common Lisp. 

The computational architnture of a prohlrm-solving sys- 
tem (or system romponrnt) liiiilt with ;my of thr 1001s is 
hn~rcl on functionally distiiirt. highly rrtodular rlrments. 
tightly organizr~l. A grnrrir task  i i rohle~r~ wlvrr is a 
romrriunity of agrnts, whrrr rarh a g r n ~  is  of a specifir 
type. each has i ts  own ernbrcltlrd knowlrdge. The agents 
are organized so that they havr sprcifir linrs of com- 
munication with each othrr: and. ileprnding on the grnerir 
tiL5k. thvy p s s  C o n t r o l  ;trcritricl i n  ,I ~ ~ ~ * l l - ~ I ~ ~ f i i i e ~ l  was in or- 
der t o  cooperate and solvr thr prolilmi. I\ IIYPEH-built 
system is rnadr up of knowlrclgr j r , r o u p .  hirrarrhirally or- 
ganizril: a ('SRI,-tiui!t . ; ? . i t w i  con.iists of a hivrarrtiiral 
roniniiinity of rlassifiratiori .iiirrialist. rarh sprrializing in a 
sin& rla>sifiratory ronrrpt. This sort of sy.itrm arrl i i trr- 
turr. hesitics Iriakinp; irripli.rrirritaliori in an ohjrrt-orit.Iit~.cl 
programming framrw~irk fairly ray.  riiakes for \ystem\ 
that are ilistrihiit;ttilr and haw prrdirtalilc ronrurrrnries. 
The high clegrw of  rnocfiilarity--riii~diil~,s having clear funr- 
tioris. ani1 rlear in~rrarticiri.i with othrr rnodiilr.+-niakrs for 
goo11 software cnginwring at t hr knowlrdgr Irvrl. 
"strurturrd prograrnming of knriwh-dgr kt>i*s" i f  ~ o u  wil l. 

DSPL for building a M i s r i o n  PlaaninR Assistant 

We wil l  deacribe the use of DSPL (Design Specialisb 
and Plans Language) for the design and implementation of 
an expert system in  the domain of tut i ra l  air mission 
planning. After invmtigating KNOI1S sysbm from 
MITRE Corporation, an existing mission planning syntem. 
we developed the Mission Planning Assistant (MPA) using 
DSPL and our generic taqk approach to building expert 
systems. KNOBS was the primary source d domain 
howledge for the M P A  system. Our project had two 
main goals. First, we wanted to explore the use of DSPL 
for routine planning tasks. Initially, DSPL was developed 
as a result of studying a routine mechanical daign taqk." 
It seemed to us. however, that routine planning shares 
many of the chaiacteristics of routine daign, suggesting 
that they might require some of the same kinds of 
problem-solving activities. Serondly, we wantcd to invrs- 
tigate the explanation farilities that are necewary in plan- 
ning systems. We wanted to demonstrate that our grnerir 
task architecturm provide very natural and comprehensive 
frameworks for explanation. 

'l'artical mission planning in the Air Force rssentially in- 
volves the assignment of resources to various tasks. The 
resourres are primarily aircraft and their stores located at 
airbases across the theater of operations. The tasks are 
specified by an "apportionment" order issued by the Joint 
Task Force Commander to a Tactical Air Control Centrr 
(TACC). This ordrr clmcrihm the overall military ohjrr- 
tivrs a- clctcrrnined h y  thr Task Forrr (:ommandrr. ' fhr 
'I'ACX: i s  rclponsiblr for issigning airrraft and iwrsoniwl 
friim sprrific military units to meet the ohjrrtivm of t.hr 

apportionment order. 'The rrsult of thrsr assignmrnts i\ 
an "Air Tasking Order" (ATO) which summarizes thr 
rmponsihilitirs of rarh unit with rmprrt to the clay'\ rri is- 
sions. Each rnissinn plannrd rrquirrn iittrntion I O  41ic.h 
details a! the selrrtion of aircraft type appropriate to thr 
mission, srlertiun of a haw from whirh to fly the rn i sq io~ t .  
and rcuirdination with 01 hrr iiii-im~. 

l'hr lll',t systrm w r  clrc.rloprd rt i rwntlv adcIrrsw* o n l s  
a single type of mission. thr  Offrnsivr Coiintrr-Air (O(:A I 
mission. A n  OCA rnis>ion is an air strikr directed 4prrifi- 
cally against an rnemy's airliasr. Our rclection of the 
OCA mission arow primarily hrcauar of :he availability of 
the KNOBS system and its knowledge base of relrvant 
domain facts. Our approach to tactical mission planning 
treats the A i r  Tasking Order (ATO) as an abstract device 
to be designed. The planning of the missions of the com- 
pletrd AT0 involvrs a prcx-rss similar to thr prmrrrs a 
designer unclerRoes when farrd with a romplrx rnechanirai 
device to design. A view of dcsign prohlcm hoking should 
illuminate this idea. For a more comprehensive d e a r r i y  
tion of design see". 

Rout ine  Design and DSPL 

The general domain of design i s  v w t ;  i t  in\olvrs 
creativity, many different problrrn-solving trrhnique. and 
many kinds of knowledge. Coals are often poorly 
specified, and may change during the course of problem 
solving. A spcctrum of r l i ~ ~ s e s  of design problems can br 
discerned. varying in complrxity from thme problems re- 
quiring significant arnounts of "crrativity". to the most 
routinr design problcrris rrquiring n o  rreativity at all. 
The rompl~x i ty  111 a (lrsigii prohlrin wil l  drprntl on what 
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pieces of knowledge are available to the problem solver 
prior to the start of design, that is, the right pieces of 
knowledge can remove the need for creativity and turn a 
complex design task into a routine one. 

What we have called "Class 3 Design" characterizs a 
form of routine design activity which postulates that 
several distinct typm of knowledge are available prior to 
problem solving. Fint  we usume that complete 
knowkdge of the component breakdown of the to-be  
designed device is available to the p.roblem solver, includ- 
ing knowledge of what component attrihutea nccd to be 
specified in  order to sprcify a design. Thr final design 
wil l consist only of components known in advaprr. and no 
ctovrl rontpnrnts need to be synthrsixed. Scronclly, we 
iL!sumr that knowlrdge is availahle in  thr form of plari 
Tragiitrilt* rlcsrrihing the artions rqitirrcl l a  rlmign rarh 
component. A plan for drsigtiing a romponrnt will typi- 
cally include thr dnigning of sirhromponrnts .IT strps in  
the plan. Thirdly. we asstimp that rrrognition knowlrdgr 
is available that will allow thr iiriililivii w i l v r r  11) s c h t  hr- 
twrrn the altrrnativr plans for tlwigning a romponent. 
drprnclirig an thr clesign rq i r i r rmmt*  aciil tlrv s t a t r  of thr 
priililtvit siiluirix. Tlir prdi lwi l  \olving l~rtirtwl* Iiy follow- 
irig a t o p - h v n  p r o r w s  of plan wlrrtion ; t n r l  rc4inrrrrrnt. 
with loc;ilizril ti.1c.k u p  iiiicl wlvrtion 01' iiltvrn,itivv pl;~ris 
i i i i~in 1'ililiirt~ of .i alc.sigii plan i i t  ail! I r v r l .  IVhiIr 
rliiiiri- .+I rarh point i i t i t \  t i t* -iinpli*, t h v  h i g n  prorvss 
tivvrall iriay Iiv t l i i i t v  t w i i l i l v x .  .in11 ol i j r r ts  of sigtiifir;int 
riitnplrxity ran Iw ~ l i ~ ~ i y n r i l .  It  apprars t hat a signiliriint 
portion of t lit* r v r r y d a y  iirt ivity of  prartiring ilrsignrrs ran 
br analyzvd iw claw :I h i r ( n .  

In  l )Sl 'L.  a h i y n  prnlilriri solver ronsists of a hirrarrhy 
of rcxipivating. rnnrrptiiiil ~pr r i i i l i ~ t s ,  with rarh sprcialist 
rcspoii-ihlr for A piirtiriiliir Iicirtion of thr design. 
Sii i*ci. i l ists Iiighvr u p  in 1 tw liiwarrhy ilral with the mnrv 
grneral aqprrts of tho drvirr  bring ilesignrcl, while 
spcuialists Iowrr in thr hiwarrhy ilrsign ywrif ir sub- 
portions of thr IJrvirr.  or ailclrwi atlirr ilrsign sirhtasks. 
Any qwrialiht iri i iy arrrsh a clrsign clat a-tiaw (rnc*tliatrcl t)y 
an intrlligrnt data-Imsv assistant). The organization of 
the specialists and the sprrific content of each one is in- 
trndrd to prrrisrly rapti irr t h r  human drsignrr's exprrtise 
in the prohlrrri domain. Each 5prrialist in the clrsign 
hirrnrrhy contains lcxally the drnign knowledge nrrrssary 
to acrornplish that portion of the design fnr whirh it is 
rrsponsihle. Thrre arr srvrral typrs or knowledge 
represented in  rach sprrialist. thrrr of whirh are drsrrihrcl 
here. First. rxplicit design plans in vach sprcialist vnroctr 
srqiirnrc*s of pnssihlr artions to s i i r r rsd i i l l y  rninplete the 
sprrialist's task. 1)ifferrnt clrsign plans within a sprcialist 
may rnrotle altrrnative action scqirrnrrs.  hut  all r i f  the 
plans within a particular sprcialist arr always aimed at 
actiirviiig thr ,pvifir Jrsigri goals of that -pwialist. :\ 
swond type of knowledge rnrodrd within ,iprrialists is on- 
rorled in  ilrsign pl.tn sponsors. k k h  h i R n  plan hiu an 
asscxiatc*d spcinror to rlrtrrrnine thr appropriatrnew .if the 
plan in tbr run-tirrw rnntcxt. The third typr  of planning 
knowlrdge in a spcuialist is cncocled in design plan s r l r r -  
tors. The funrtion nf the selrctor knowlcvlge is to  cx- 
amine the run-time judgments of the dmign plan sponsors 
and deterrriine which of the design plans within the 
sprrialist is nimt appropriatr to the riirrc'nt prohlrni ron- 
t l . X l .  

('iintriil i i t  .i l)Sl'l, \ystrrri prnrwl3 downwards frorrt I t iv  
top-most hpcvirlist i n  thr dnign hiwarrhy. ~I I~~I I I I I I I I~  
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with the topmost rpecialirt, each rpccialut selects a 
design plan appropriate to the requiremnts of the 
problem and the current state of the solution. The 
relcctrd plan is executed by performinR the design actiotu 
specified by the plan. This may include computing and 
assigning specific values to attributm of thr device, check- 
ing ronstraints to test thr pro8r-q nf thr design. or in- 
voking sub-sperialista to acromplish sub-portions of the 
dmign. Thus a design plan which rrfrn to a sub 
spccialiat is rrfinrd by pnssing rnntrnl lo that sub 
specialist in its turn. DSPL A l s o  inrliides farilitim for the 
handling of various typrs of plan failures, and Tor controll- 
ing redesign suggested by surh 

Mirrion Planning ar Rootlne D d g n  

We view tactical mission planning aa predominantly a 
routine design tmk. The problem ran  be decomposed into 
the design of subcomponents of the mission plan, where 
each component can be deaigned in a fairly independent 
fashion. The A i r  Taaking Order is decompofied into 
various mirsions or Rroups of missions of known t y p .  
Each mission or group of missions ran tir planned rela- 
tively independently of the others. modulo resource conten- 
tion considerations. I n  both the mission planning and the 
mechanical design domains, rach o f  thr solutions to the 
subproblems must tie appropriately combined into the 
solution for the problem which thry drcompose. Due to 
the well known limitations of human problem solving 
capacities, i t  is apparent that a human problem solver can 
be succmsful in siirh a .cititation only to the rx tent  that 
she can decompose the prohlrm into a manageable n u m k  
of somewhat indeprndent suh-prohlrms, which ran be 
solved separately and rombincd into a final solution. The 
MPA system uws DSI'I. a a natural rncuhanism for 
rrpresenting the necessary knowleclgr. 

The  MPA System 

'rile MI 'A  systcrn contains hix 3prcialists. The toprnatt 
sprciolist, OCA. accepts the mission rrquirements and ul- 
timately produces the final mission plan. The OCA 
specialist divides its work hetwan two suhspecialists, base 
and airrraft. The base aprrialist is  responsible for r k c t -  
ing an appropriate hme, while thr aircraft specialist sckch 
an airrraft typr, The aircraft upcrialist has thrn sub 
sprrialists, OIIV for rarh of t l l rrr  airrraft typc?c known tn 
t,hr MIi . \  3y3tvrtt. As nrrdrtl, one of thrsr slmialists w i l l  
wlrrt ;In appcnpriate ronfiguraticin for i t s  airrraft typc. 

I'rahlrm rolving hrgins when t h r  OCA sprrialist is rr- 
clucstt-d to plan a mission. Cirrrrntly. the OC.4 sprrial: j t  
rontains only a ninglr drsign plan which lint rrquests the 
Iiiisr spwiiilist t o  dtmtrrriiinr a ti;csr. iind then riyirrsru the 
aircraft sprrialist to deterrriinc* (and configure) ail a p  
propriatr airrraft for thr mission. Tlir r i r r r rn t  brv 
.;pivialist .iirnply rrli-rts r I i aw from <i li*t of rawlidate 
haws grographic;illy w a r  I hr  target. The airrraft 
sprriiilist IISIY ronsidcratiiins of t hrrat tylim and wrathrr 
conditions at thr  targist to si+rr ,in apprnjiriatr iiirrraf! 
type and nunitwr for the mission. Thr airrraft sprrialist 
and its t h r w  ronliguration sirt)sprrialisIs rrprrstwt the 
most rlahoratrd tlornain knowlwlgr in  thr MI'.\ spstrm. 

Suppose the mission reqiiirr'nirnts r a l l  for A night raid. 
The plan sponsors Tor hoth thr  A - I O  and F - t  worild rule 
nut the possiliility of using thrsr airrrrft.  \inrr ( in our 



domain model) neithrr of thnc aircraft havr night flying 
cap8bitity. The F-l I I  plan *pnnnor. sinrr i t  is an all- 
weather fi$der with night rapahilitira, would riot he ex- 
cluded. The plan sponsor for the F-Ill, hawcl on this 
and other considerations (rangc, ability to carry ap- 
propriate ordinanrc. targrt churactrrirtics. rtc.) woiild find 
the F-111 suitable for the mission. The plan srlector in  
the aircraft specialist, finding that two design plans have 
ruled out, would select the "suitable" F-Ill  design plan. 
and return this information to the specialist. The 
specialiut executes the F - I l l  dwign plan. which includes 
setting the aircraft type in the rriirnion template to 
"F-I I I", and invoking the F-I1 I configuration specialist 
which in turn decidea an acceptable ordinance load for the 
F - I l l  for this mission. Once the configuration of the 
aircraft is  known, the singlr aircraft prohahility of destruc- 
tion in the rriisaion context can he computed. Finally. 
knowing the mission capahilitics of rach aircraft, tho rr- 
qiiired number of airrraft ran t;r clctcrinincd in orclcr to 
achieve the required probability of clrstruction. and thr 
nerrssary numher of aircraft can bc rewrvecl frorri the 
proper unit. 
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